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Abstract

The paper examined the steady-state multiplicity behaviour of the porous, non-isothermal, finite cylindrical catalyst pellet in the
absence of external transport resistances. A numerical multigrid continuation technique with the preconditioned conjugate gradient
squared as coarse grid solver was used. The numerical methods proved to be efficient and reliable so that computations with fine grids
(up to 129 � 129 grid points on the unit square) are easily performed. The key parameter of the investigation is the reaction parameter.
The effect of the other governing parameters (especially the aspect ratio) was also analysed. An infinite number of steady states, with a
scenario different from that usually used to explain this situation, were obtained at small values of the aspect ratio (the height of the
cylinder is greater than the diameter of the cylinder).
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Catalyst particles of cylindrical shape are widely used in
industrial processes. In spite of this fact, relatively few pub-
lished articles analysed the diffusion and reaction phenom-
ena in finite cylinders. The multiplicity and stability of the
steady states in a cylindrical catalyst pellet received even
less attention.

The diffusion accompanied by an isothermal, first-order
irreversible chemical reaction in finite hollow and solid cyl-
inders was investigated in [1–5]. The main goal of these
papers was to work-out a relation for the effectiveness fac-
tor. An integral equation method was developed in [6,7] to
solve the problem of diffusion and reaction in a porous,
non-isothermal finite cylindrical pellet in the absence [6]/
presence [7] of external transport resistances. Multiplicity
features and steady-states stability of a cylindrical catalyst
pellet were studied in [8–11].
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Sorensen et al. [8] used the orthogonal collocation tech-
nique to solve the problem of first-order chemical reaction
in a non-isothermal finite cylindrical catalyst pellet
with Dirichlet boundary conditions. A predictor–corrector
method based on sensitivity analysis was used to obtain the
boundaries of the region of multiplicity. Burghardt and
Berezowski [9] analysed the multiplicity of the steady states
for an infinite cylinder. They found that the parameters
domain where multiple steady states exist decreases when
the pellet shape changes from the infinite slab to the infinite
cylinder to the sphere. The analysis of the stability of the
steady state solutions for porous catalytic pellets of differ-
ent shape can be viewed in [10]. Pan and Zhu [11] draw
the conclusion that the multiplicity features for a finite cyl-
inder are analogous to those of an equivalent diameter
sphere. The non-isothermal, first-order irreversible chemi-
cal reaction in the absence of inter-phase gradients was
analysed in [11].

This work wishes to compute the bifurcation diagrams
of a finite, non-isothermal, cylindrical catalyst pellet (some
results about the finite slab catalyst pellet can be viewed in
[12]). This way, we tried to solve two problems: one of
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Nomenclature

C concentration of reactant in the pellet
CB bulk concentration of the reactant
d cylinder diameter
Deff effective diffusivity of reactant in the porous cat-

alyst pellet
E activation energy of the chemical reaction
H cylinder height
k0 pre-exponential factor
r radial coordinate, cylindrical coordinate system
r* dimensionless radial coordinate, 2 r/d, in cylin-

drical coordinate system
RG gas constant
T temperature of the pellet
TB bulk temperature
y dimensionless concentration of reactant in the

pellet, C/CB

z axial coordinate, cylindrical coordinate system
z* dimensionless axial coordinate, 2 z/H, cylindri-

cal coordinate system

Greek symbols

b dimensionless adiabatic heat rise (Prater
number), (�DHRDeffCB)/(keffTB)

c dimensionless activation energy (Arrhenius
number), E/RGTB

DHR heat of reaction
e aspect ratio, d/H
g effectiveness factor
h dimensionless pellet temperature, T/TB

keff effective thermal conductivity in the porous
catalyst pellet

q bulk density of the pellet

/ Thiele modulus, u ¼ d
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qk0 exp ð�cÞ

Deff

q
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engineering interest (a detailed investigation of the finite
cylinder bifurcation behaviour was not made until now)
and the other of computational interest (iterative continu-
ation algorithms were tested on a new mathematical
model). The chemical reaction is considered first-order irre-
versible and the inter-phase gradients were neglected. A
multigrid (MG) continuation technique was employed to
calculate a family of solutions. The coarse grid computa-
tions were performed by a preconditioned conjugate gradi-
ent algorithm. The path of solutions computed in this work
is compared to that provided by the equivalent diameter
sphere model [3] (i.e. the sphere that has the ratio vol-
ume/external surface equal to that of the cylinder).
2. Mathematical model

Consider a non-isothermal, first-order irreversible chem-
ical reaction taking place inside a finite cylindrical catalyst
pellet of diameter d and height H. The inter-phase trans-
port resistances are assumed negligibly. This implies that
the concentration and temperature on the external surface
of the catalyst pellet are the same as the bulk values. Fol-
lowing the classical formulation presented in [3], which
assumes a homogeneous porous pellet and using effective
transport coefficients, the steady state concentration and
temperature profiles inside the cylinder are given by

DeffDC � qk0C exp � E
RGT

� �
¼ 0 ð1aÞ

keffDT þ ð�DH RÞqk0C exp � E
RGT

� �
¼ 0 ð1bÞ

where
D ¼ 1

r
o

or
r

o

or

� �
þ o

2

oz2

with the boundary conditions:

–r = 0;

oC
or
¼ oT

or
¼ 0 ð2aÞ

–r = d/2;

C ¼ CB; T ¼ T B ð2bÞ

–z = 0;

oC
oz
¼ oT

oz
¼ 0 ð2cÞ

–z = H/2;

C ¼ CB; T ¼ T B: ð2dÞ

Defining the dimensionless variables and groups

r� ¼ 2r=d; z� ¼ 2z=H ;

y ¼ C
CB

; h ¼ T
T B

; e ¼ d
H
;

b ¼ �DHRDeffCB

keffT B

; c ¼ E
RGT B

; u ¼ d
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qk0 expð�cÞ

Deff

s

the non-dimensional form of (1) is

D�y � u2y exp c 1� 1

h

� �� �
¼ 0 ð3aÞ

D�hþ bu2y exp c 1� 1

h

� �� �
¼ 0 ð3bÞ
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where

D� ¼ 1

r�
o

or�
r�

o

or�

� �
þ e2 o2

oz�2

with the boundary conditions

–r* = 0;

oy
or�
¼ oh

or�
¼ 0 ð4aÞ

–r* = 1;

y ¼ h ¼ 1 ð4bÞ
–z* = 0;

oy
oz�
¼ oh

oz�
¼ 0 ð4cÞ

–z* = 1;

y ¼ h ¼ 1 ð4dÞ
Following the analysis of Prater [13], the system of two
partial differential equations (3), can be transformed into a
single partial differential equation

D�y � u2y exp c 1� 1

1þ bð1� yÞ

� �� �
¼ 0 ð5aÞ

and the linear algebraic relation

h ¼ 1þ bð1� yÞ ð5bÞ
relating dimensionless temperature and concentration.

The present results are summarized in terms of:

[-] pellet average dimensionless temperature, �h:
�h ¼ 2

Z 1

0

Z 1

0

r�hdr� dz� ð6aÞ

[-] pellet average dimensionless concentration, �y:

�y ¼ 2

Z 1

0

Z 1

0

r�y dr� dz� ð6bÞ

[-] effectiveness factor, g:

g ¼ 2

Z 1

0

Z 1

0

r�y exp c 1� 1

h

� �� �
dr� dz�: ð6cÞ

3. Numerical methods

The models equations were discretized with the stan-
dard, central second-order accurate, finite difference
scheme on grids with N � N points and steps sizes
hr = hz = h = 1/(N � 1).

Consider that the discrete approximation of the mathe-
matical model equation (5) can be written as

Gðu; pÞ ¼ Bu� pgðuÞ ¼ 0 ð7Þ
where u 2 Rn corresponds to the field variables, p 2 R is the
parameter of interest, B an n � n matrix and g: Rn ? Rn a
smooth mapping. For the numerical computation of bifur-
cation points, two classes of methods can be used: direct
methods and indirect methods. In this work, indirect meth-
ods were used.

Indirect methods used continuation techniques [14,15],
through limit or bifurcation points and distinct methods
to accurately locate these points. To pass turning points,
the continuation technique necessitates the specification
of a new parameter s and an additional equation for s.
The reparameterized problem is:

Gðu; pÞ ¼ 0 ð8aÞ
Nðu; p; sÞ ¼ 0 ð8bÞ

Equation (8b) is usually named parametrization equation.
The biggest computational effort of any continuation pro-
cedure is the solution of the bordered linear systems

Gu Gp

Nu Np

� �
du

dp

� �
¼ �

G

N

� �
ð9Þ

If Gu is large and sparse (the mathematical model of the pro-
cess is a 2(3)-D partial differential equation), iterative meth-
ods solve usually the system (9) efficiently and accurately.

MG and PGCG methods proved to be the most power-
ful iterative methods to solve numerically partial differen-
tial equations. Nonetheless, these methods have not been
used very much in numerical bifurcation techniques. MG
and PGCG methods for continuation past bifurcation
points are reviewed in [16]. From the software developed
until now, the well known and widely used are PLTMG
[17] and LOCA [18] (we refer only to software based on
iterative methods for 2(3)-D PDE).

PLTMG uses two different parametrization equations,
[19,20], and solves the system of nonlinear equations (8)
by a combination of a damped Newton iteration and mult-
igraph iteration [21]. The bordered system of equations (9)
is solved by a block Gauss elimination procedure. This
requires the solutions of two sets of equations using multi-
graph iteration. LOCA is a library of numerical bifurcation
algorithms based on PGCG and bordered methods.

The present continuation technique is a non-bordered
iterative algorithm [16], based on the works of Govaerts
[22,23]. Let u(0) (s(0)), p(0) (s(0)) be the solution of (8) and
ds the continuation step in s. The elements of the continu-
ation step are:

– Parametrization, [24]

Nðu; p; sÞ � ½ku� uð0Þk2 þ ðp � pð0ÞÞ2�1=2 � ds ð10Þ
– Predictor step, [24]

�u ¼ uð0Þ þ ðdsÞ u
ð0Þ � uð�1Þ

ðdsÞð0Þ
ð11aÞ

�p ¼ pð0Þ þ ðdsÞ p
ð0Þ � pð�1Þ

ðdsÞð0Þ
ð11bÞ

– Corrector step
Newton method applied to (8).
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The continuation algorithm acts on a single, coarse
grid. The multi-grid cycle used to calculate the fine grid
solution is similar to the classical FAS algorithm. The
main differences consist of [25]: (a) the parameter p is
not altered on fine grids since no high-frequency errors
are related to p; on fine grids only equation (7) is
smoothed; (b) the coarse grid equation should include
the fine grid residuals of all equations; on the coarse grid
the enlarged system (8) is solved. The structure of the
MG cycle is: (1) cycle of type V; (2) smoothing by point
Gauss–Seidel or line Gauss–Seidel (depending on the
values of the aspect ratio); two smoothing steps are
performed before the coarse grid correction and two after;
(3) prolongation by bilinear interpolation for corrections
and cubic interpolation for solution; (4) restriction of
residuals by full weighting.

The algorithm described previously performs the
continuation on a single (coarse) grid. MG methods are
used to refine the coarse grid solution. The coarse grid
equations (the continuation step and the MG level 1 equa-
tions) were solved by the Newton method. The linear sol-
ver in a Newton step is the preconditioned conjugate
gradient squared (PCGS) algorithm, [26]. The precondi-
tioners used are the incomplete LU factorisation (with
two extra diagonals; algorithm IC (1, 3) [27]) and the
multigrid approximation (two multigrid cycles) of the
matrix
B 0

0 1

� �
:

The structure of the MG cycle used in preconditioning is:
(1) cycle of type V; (2) smoothing by point or line Gauss-
Seidel; one smoothing step is performed before the coarse
grid correction and one after in the opposite direction;
(3) prolongation by bilinear interpolation; (4) restriction
by full weighting; (5) the coarse grid has 5 � 5 points.
The stopping criterion used for PCGS is
krik
kr0k

6 10�6
where ri is the residual after i iterations and kk the discrete
Euclidean norm. The maximum number of iterations
allowed is 1000.

The program starts at low values of p and with a usual
continuation algorithm computes some solutions. After a
number of steps the program switches to the continuation
procedures described previously with ds calculated from
the last solutions. The technique for automatically chang-
ing the step length ds is presented in [16]. The convergence
criterion is:
jpðkÞ � pðk�1Þj 6 10�5jpðk�1Þj ð12Þ
The algorithms described previously gave a method for
continuing through bifurcation points. To accurately
locate the critical points, the alternative approach, based
on Cayley transform and power iteration, was used in this
work.
4. Results

The dimensionless mathematical model (5) depends on
four non-dimensional parameters: b, c, e2 and /2. In all
simulations, the reaction parameter /2 was the continua-
tion parameter. Based on the data presented in [3,28,29],
b and c take the values 0 < b 6 0.6, 0 < c 6 28. Values of
the aspect ratio e between [0.1, 10] cover the situations of
practical interest.

This section is divided into two parts. In the first, we
analyse the case e = 1. The second is dedicated to the influ-
ence of the aspect ratio on the multiplicity pattern.

4.1. The case e = 1

The first aspects discussed in this section are of numeri-
cal interest. We present results concerning the mesh behav-
iour of the solutions and the convergence rate of the
numerical algorithms.

From the simulations made, we selected for presenta-
tion (see Figs. 1–3) those provided by the parameter set,
b = 0.4 and c = 28.0. This choice captures the salient
numerical problems encountered during the numerical
experiments.

Figs. 1–3 show that: (1) the numerical algorithms con-
verge; (2) significant deformation of the bifurcation dia-
gram due to discretization (false bifurcation points, [30])
occurs only on the 5 � 5 points mesh; (3) the solution sta-
bilizes from the 17 � 17 points grid; (4) the branches pro-
vided by the meshes with N = 33, 65, 129 practically
overlap (however, the resolution of the graph should be
taken into consideration).

For a given parameters set, the convergence rate of
PCGS was monitored by the cumulative number of multi-
plications per grid point and non-linear iteration step. This
quantity is an average value calculated for all continuation
steps required by a path of solutions on a given mesh. Con-
cerning the convergence rate of PCGS as single grid and
coarse grid solver, we can note the following facts (see also
Fig. 4):

– the influence of the parameters values on the conver-
gence rate of PCGS is not significant; for example, the
differences between a parameters set that exhibits multi-
plicity and another parameters set that does not exhibit
multiplicity are less than 10%;

– the convergence rate is practically the same for all points
of the branch;

– CGS, i.e. the non-preconditioned algorithm, converges
on all meshes;
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Fig. 1. Solution curves in the �h–/2 diagram; b = 0.4, c = 28 and e = 1; (a) the entire path of solutions; (b) zoom on the ignition point; (c) zoom on the
extinction point.
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– preconditioning improves only slightly the robustness
and efficiency of the algorithm.
The data plotted in Fig. 4 are average values computed
for 20 parameters sets. Restrictions on the continuation
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step ds were not imposed during the numerical experiments
made to evaluate the convergence rate.
Some accidents occurred during the numerical experi-
ments. However, these accidents were isolated and can be
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explained by the typical behaviour of CGS. We cannot
state that, for a given parameters set, PCGS as single grid
or coarse grid solver fails.
Based on extensive numerical experiments and the
results plotted in Figs. 1–3, we selected the following
numerical strategy: the continuation is performed on a
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mesh having 17 � 17 points or 33 � 33 points; the solu-
tions on the grids with N = 65 or N = 129 is provided by
a three level MG algorithm.

The convergence rate of the MG algorithm is given by
the average number of MG cycles per continuation step.
A value approximately equal to 3, similar to that encoun-
tered in usual MG algorithms, was obtained. The solutions
obtained on a mesh by MG were always compared to those
provided on the same grid by a single grid continuation.
Differences between the MG and single grid solutions were
not encountered.

Almost all simulations were focussed on the domain
0.4 6 b 6 0.6, 20 6 c 6 28. In all situations, we obtained
only bifurcation diagrams of the type 1–3–1 (only two turn-
ing points were detected) similar to those depicted in Figs.
1–3. Some of the turning points calculated are presented in
Table 1.

For e = 1, the mathematical model equations have three
parameters. According to [31], the appearance of a swal-
low-tail point (a singularity of codimension 3) is possible.
However, we obtained only bifurcation diagrams corre-
sponding to a non-degenerate hysterezis. A cusp point (a
singularity of codimension 2) may be considered as origin
of this multiplicity pattern. This behaviour was explained
Table 1
Numerical values of /2 at the turning points

c b

0.4 0.5 0.6

20 0.436967 0.335139 0.272343
0.2969299 0.145192 0.0743234

24 0.346459 0.268710 0.219642
0.139077 0.0561847 0.0242189

28 0.287656 0.224502 0.1841895
0.06169375 0.0204963 0.00742677
by Meinköhn [32]. The computation of the cusp point
and the tracing of the critical boundaries are outside the
aims of this work. The computation of the cusp points
and of the critical boundaries necessitates specific algo-
rithms, different from the one used here (see [33] and the
references cited herein).
10-2 10-1 100
100

-2 -1 0

0

ϕ 2

Fig. 5. Comparison between finite cylinder and equivalent sphere
response curves; dash lines – finite cylinder results; dot lines – sphere
results; c = 20 and e = 1; (a) b = 0.4; (b) b = 0.5; (c) b = 0.6.
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The key parameter that expresses the influence of inter-
nal diffusion on the chemical reaction rate is the effective-
ness factor. In practice, catalyst pellets have different
shapes. To calculate the effectiveness factor for each shape
is a relatively laborious and inefficient process. To solve
this problem, Aris [3] pointed out that a shape independent
effectiveness factor is obtained if, in the definition of the
Thiele modulus, the ratio (volume)/(surface area) is used
as characteristic dimension. Aris’s idea became one of the
widely used principles in effectiveness factor computation.
Based on the same principle, Pan and Zhu [11] established
the quasi-equivalence between the critical boundaries of the
finite cylinder and the equivalent sphere. Recently, for an
isothermal, first-order irreversible chemical reaction, Asif
[5] reported deviation up to 12% between the effectiveness
factor of the finite cylinder and that of the equivalent
sphere.

Fig. 5 shows a comparison between the bifurcation dia-
grams of the finite cylinder and the equivalent sphere. Note
that for e = 1, the equivalent sphere has the diameter equal
to that of the finite cylinder. The results presented in Fig. 5
were obtained on a grid with N = 129.

From the data plotted in Fig. 5, we can make the follow-
ing observations:
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Fig. 6. Mesh behaviour of the solutions for b = 0.4, c = 28 a
– outside the region of turning points, there exists a good
agreement between the results of the finite cylinder and
the equivalent sphere;

– the bifurcation diagrams have the same shape for both
geometries;

– significant quantitative differences occur only in the
region of turning points; at the turning points, the abso-
lute value of the relative deviation (cylinder–sphere)/
(cylinder) in /2 is around 20%; this value is practically
independent from b.

The situation depicted in Fig. 5 is not characteristic only
for the effectiveness factor. The concentration and temper-
ature profiles, expressed by the pellet average values, exhi-
bit the same behaviour with the same maximum deviation.

The same statements would have been made if we had
selected a parameters set with constant b and c variable.
We encountered practically this situation in all simulations
made at e = 1, 0.4 6 b 6 0.6 and 20 6 c 6 28.

4.2. The influence of the aspect ratio on multiplicity pattern

The convergence rate of the numerical algorithms is not
influenced significantly by the aspect ratio. We must
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nd e = 0.1; (a) N = 5; (b) N = 9; (c) N = 17; (d) N = 33.
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mention only one aspect. For e 6 0.2 or e P 5, a severe
control of the continuation step ds is necessary. Small val-
ues of ds reduce the number of PCGS and MG iterations
per continuation step. However, we cannot state that for
small or large values of the aspect ratio the convergence
rate of the algorithms improves.

The general remarks made in the previous section con-
cerning the influence of discretization on results accuracy
remain valid for e 6¼ 1. We considered it interesting to pres-
ent one of the situations encountered at e = 0.1 (see Fig. 6).
Note that for the case plotted in Fig. 6, the branches com-
puted on the grids with N = 65 and 129 graphically coin-
cide with that depicted in Fig. 6d (N = 33).

The influence of the aspect ratio on the multiplicity pat-
tern is plotted in Fig. 7. The comparison between the cylin-
der and equivalent sphere results can be viewed in Fig. 8
(e 6 1) and 9 (e P 1). The situation depicted in Figs. 7–9
is not specific only for b = 0.6 and c = 20. It can be consid-
ered typical for 0.4 6 b 6 0.6 and 20 6 c 6 28.

For e < 1, the most interesting result is the infinite num-
ber of steady states obtained at e = 0.1. Note that the
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Fig. 7. Bifurcation diagrams for b = 0.6 and c = 20; (a) e 6 1; (b) e P 1.
branch computed at e = 0.2 has only two turning points.
Investigating carefully the behaviour of the system for
0.1 6 e 6 0.2, we obtained profiles with an infinite number
of steady states for e2

6 0.034750.
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results; c = 20 and b = 0.6; (a) e = 0.5; (b) e = 0.2; (c) e = 0.1.
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An infinite number of steady states it is not something
new for a catalyst pellet [34–38]. Kapila et al. [35] proved
that, in 1 – D, the Dirichlet problem for a non-isothermal
first-order Arrhenius kinetics exhibits an infinite number of
steady states only in spherical geometry. Witmer et al. [38]
considered that an infinite number of steady states is the
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Fig. 9. Comparison between finite cylinder and equivalent sphere
response curves; dash lines – finite cylinder results; dot lines – sphere
results; c = 20 and b = 0.6; (a) e = 2; (b) e = 5; (c) e = 10.
result of an infinity of imbedded cusps. The scenario pro-
posed by Witmer et al. [38] does not apply to the present
situation. The present system does not reach an infinite
number of steady states passing through intermediate pat-
terns with 5, 7, . . . , steady states. To describe the present
situation, we imagine the following mechanical picture:
the aspect ratio acts on the bifurcation diagram as someone
who pulls a lever in order to put it in vertical position. In
[34–38] the infinite number of steady states is the result
of the reaction parameters variation, i.e. the parameters
that belong to the nonlinear part of the mathematical
model (a normal situation because the nonlinear compo-
nent of the model is responsible for the multiplicity). In
our case, the multiplicity pattern changes when a diffusion
parameter, i.e. a parameter that occurs in the linear part of
the model, changes.

For a given b, the influence of c variation on the bifur-
cation diagrams obtained at e = 1 and e = 0.1 can be
viewed in Fig. 10 (a similar graph is obtained varying b
and keeping c constant). Fig. 10 shows that the bifurca-
tions diagrams calculated for e = 0.1 have a different shape
in comparison with those corresponding to e = 1. However,
in Fig. 10a, only the branches corresponding to c = 20 and
28 exhibit an infinite number of steady states.

Concerning the case e < 1, other noticeable aspects that
can be observed in Figs. 7 and 8 are:
10 -2 10 -1 10 0 10 1
0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

θ

ϕ 2

     = 20

    = 18
    = 16
    = 15

β  = 0.4
ε  = 0.1

ι   = 28

10 -2 10 -1 10 0 10 1
0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

θ

ϕ 2

     = 20
    = 18
    = 16

    = 15

β  = 0.4
ε  = 1

ι   = 28

Fig. 10. Bifurcation diagrams for b = 0.4; (a) e = 0.1; (b) e = 1.
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– the decrease in the aspect ratio from 0.5 to 0.1 does not
change significantly the values of the Thiele modulus at
the ignition and extinction points;

– for e = 0.5 the equivalent sphere model approximates
well (even better than at e = 1) the finite cylinder; the
decrease in e to 0.2 and 0.1 amplifies the differences
between the finite cylinder and the equivalent sphere;
this behaviour is similar to that presented in [5].

In Fig. 8c, the bifurcation diagram provided by the infi-
nite cylinder is also plotted. The diameter of the infinite cyl-
inder is considered equal to the diameter of the finite
cylinder. Fig. 8c shows that the infinite cylinder approxi-
mates better than the equivalent sphere the finite cylinder
at e = 0.1. However, the shape of the bifurcation diagram
of the infinite cylinder (a typical non-degenerate hysterezis)
is different from that of the finite cylinder at e = 0.1.

For e > 1, we note the following facts: (1) the increase in
e increases the values of the Thiele modulus at the ignition
and extinction points and deforms the shape of the path of
solutions; (2) the branches have only two turning points;
(3) as in the previous case, the variation in e has an oscilla-
tory influence on the differences between the finite cylinder
and the equivalent sphere; for large values of the aspect
ratio, significant differences exist between the two models.

In Fig. 9c, the bifurcation diagram provided by the infi-
nite slab is also plotted. The characteristic dimension of the
infinite slab is H/2. Note that for the infinite slab, the pres-
ent results are in excellent agreement with those presented in
[33,39,40]. Fig. 9c shows that the infinite slab approximates
better than the equivalent sphere the finite cylinder at
e = 10. However, we cannot state that a good agreement
exists between the bifurcation diagrams of the infinite slab
and the finite cylinder.
5. Conclusions

The bifurcation diagrams of a non-isothermal finite cyl-
inder catalyst pellet were calculated neglecting the external
gradients. A numerical MG continuation technique with
psedo-arc-length parametrization was applied to the finite
difference approximation of the mathematical model. The
bifurcation diagrams computed for the finite cylinder are
compared to those provided by the equivalent sphere
model.

The influence of the aspect ratio on the multiplicity pat-
tern is the most important result obtained in this work. For
e = 1, the behaviour of the system is the typical one for a
catalytic diffusion-reaction systems in the absence of exter-
nal resistances. Bifurcation diagrams generated by a cusp
singularity were obtained. For small values of the aspect
ratio, concretely at e = 0.1, a multiplicity pattern with an
infinite number of steady states occurs. The path from
the usual non-degenerate hysterezis to an infinite number
of steady states is different from that encountered in other
situations.
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